Preview

Акушерство и Гинекология Санкт-Петербурга

Расширенный поиск

Выбор оптимальной панели исследования одиночных нуклеотидных полиморфизмов перед ЭКО

Полный текст:

Аннотация

В настоящее время перед подготовкой к процедуре ЭКО пациентам необходимо пройти ряд плановых исследований, в том числе определение аллелей одиночных нуклеотидных полиморфизмов (single nucleotide polymorphisms, SNP). Данные исследования не включены в большинство страховых программ и, как правило, оплачиваются пациентами отдельно. Имеются предпосылки к исследованию более 50 полиморфизмов. Важной задачей становится определение оптимальной панели исследования по соотношению цена/число SNP.

За 2009-2015 годы в Университетской клинике СПбГУ были проанализированы образцы крови 550 женщин с различными нарушениями репродуктивной системы, готовящихся к ЭКО, и 46 здоровых женщин в контрольной группе. Проанализированы 28 SNP в генах факторов тромбофилии, цикла фолиевой кислоты, системы детоксикации и системы ренин-ангиотензина. Показано достоверное повышение частоты патологических аллелей ряда полиморфизмов у пациенток с привычной неудачей ЭКО по сравнению с контрольной группой.

В результате определено два варианта оптимальных панелей для типирования SNP перед ЭКО. Стандартная панель из 8 SNP включает полиморфизмы 20210 G > A гена F II, R506Q G > A гена F V (Лейденская мутация), -675 5G > 4G гена PAI-I, L33P T > C гена ITGB3, -455 G > A гена FGB, 667 C > T гена MTHFR, 2756 A > G гена MTR, 66 A > G гена MTRR. Расширенная панель из 15 SNP включает также 807 C > T гена ITGA2, T154M C > T гена GP1BA, второй полиморфизм 1298 A > C гена MTHFR, полиморфизмы генов системы ренин-ангиотензина M235T T > C гена AGT и -1166 A > C гена AGTR1, полиморфизмы гена системы детоксикации GSTP I105V A > G и A114V C > T.

Показано, что по результатам генотипирования SNP может быть скорректирована тактика лечения и ЭКО, медикаментозное сопровождение полученной беременности. В результате повышается уровень успеха ЭКО, особенно в группе с привычной неудачей ЭКО.

Об авторах

А. В. Иванов
Университетская клиника СПбГУ («СПМЦ»); ЗАО Северо-Западный центр доказательной медицины
Россия

Иванов Андрей Владимирович - кандидат биологических наук, биолог отделения гематологии Университетской клиники СПбГУ; заведующий отделом генетики человека СЗЦДМ.

190103, Санкт-Петербург, Набережная реки Фонтанки, д. 154; 196158, Санкт-Петербург, Пулковское шоссе, д. 28А


А. Г. Ткачук
Университетская клиника СПбГУ («СПМЦ»); ПСПбГМУ им. акад. И.П. Павлова
Россия

Ткачук Анна Геннадьевна - кандидат медицинских наук, доцент кафедры акушерства, гинекологии и репродуктологии ФГБУ ВО ПСПбГМУ им. акад. И.П. Павлова; врач акушер-гинеколог, репродуктолог отделения планирования семьи и репродукции Университетской клиники СПбГУ.

197022, Санкт-Петербург, ул. Льва Толстого, д. 6-8; 190103, Санкт-Петербург, набережная реки Фонтанки, д. 154



Э. В. Комличенко
ПСПбГМУ им. акад. И.П. Павлова
Россия

Комличенко Эдуард Владимирович - доктор медицинских наук, профессор кафедры акушерства, гинекологии и неонатологии, заместитель руководителя клиники акушерства и гинекологии.

197022, Санкт-Петербург, ул. Льва Толстого, д. 6-8



Ю. Н. Федотов
Университетская клиника СПбГУ («СПМЦ»)
Россия

Федотов Юрий Николаевич - доктор медицинских наук, врач высшей квалификационной категории, Заслуженный врач России, директор Университетской клиники СПбГУ.

190103, Санкт-Петербург, набережная реки Фонтанки, д. 154


Список литературы

1. Facchinetti F., Marozio L., Grandone E., Pizzi C., VolpeA., Benedetto C. Thrombo-philic mutations are a main risk factor for placental abruption. Haematologi-ca. 2003; 88: 785-788.

2. Coulam C.B., Jeyendran R.S. Thrombophilic gene polymorphisms are risk factors for unexplained infertility. Fertil Steril. 2009, Apr; 91 (4 Suppl): 1516-1517. DOI: 10.1016/j.fertnstert.2008.07.1782.

3. Coulam C.B., Jeyendran R.S., FishelL.A., RoussevR. Multiple thrombophilic gene mutations rather than specific gene mutations are risk factors for recurrent miscarriage. Am. J. Reprod. Immunol. 2006, May; 55 (5): 360-368. DOI:10.1111/j.1600-0897.2006.00376.x.

4. Yenicesu G.I., Cetin M., OzdemirO., Cetin A., Ozen F., Yenicesu C. et al. A prospective case-control study analyzes 12 thrombophilic gene mutations in Turkish couples with recurrent pregnancy loss. Am. J. Reprod. Immunol. 2010? Feb; 63 (2): 126-136. DOI: 10.1111/j.1600-0897.2009.00770.x.

5. . Torabi R., Zarei S., Zeraati H., Zarnani A.H., Akhondi M.M., Hadavi R. et al. Combination of Thrombophilic Gene Polymorphisms as a Cause of Increased the Risk of Recurrent Pregnancy Loss. J. Reprod. Infertil. 2012, Apr - Jun; 13 (2): 89-94.

6. Coulam C.B., Wallis D., Weinstein J., DasGupta D.S., Jeyendran R.S. Comparison of thrombophilic gene mutations among patients experiencing recurrent miscarriage and deep vein thrombosis. Am. J. Reprod. Immunol. 2008, Nov; 60 (5): 426-431. DOI: 10.1111/j.1600-0897.2008.00640.x.

7. Fabregues F., Tassies D., Reverter J.C., Carmona F., Ordinas A., Balasch J. Prevalence of thrombophilia in women with severe ovarian hyperstimulation syndrome and cost-effectiveness of screening. Fertil Steril. 2004; 81: 989-995. DOI: 10.1016/j.fertnstert.2003.09.042.

8. Branch D.W. The truth about inherited thrombophilias and pregnancy. Ob-stet Gynecol. 2010; 115: 2-4. DOI: 10.1097/AOG.0b013e3181c879ca.

9. Ricci G., Bogatti P., Fischer-Tamaro L., Giolo E., Luppi S., Montico M. et al. Factor V Leiden and prothrombin gene G20210A mutation and in vitro fertilization: prospective cohort study. Hum. Reprod. 2011, Nov; 26 (11): 3068-3077. DOI: 10.1093/humrep/der261.

10. Prasolova M.A., Shchepotina E.G., Dymshits G.M. Development of the high-throughput fluorescence assay detecting SNPs in hemostasis and folate metabolism genes for clinical use. Mol. Gen. Mikrobiol. Virusol. 2013; 1: 34-40. Russian.

11. Aalen O.O., Borgan 0., andGjessing H.K. Survival and event history analysis: a process point of view. Springer Verlag, 2008.

12. Qublan H.S., Eid S.S., Ababneh H.A., Amarin Z.O., Smadi A.Z., Al-Khafaji F.F. et al. Acquired and inherited thrombophilia: implication in recurrent IVF and embryo transfer failure. Hum. Reprod. 2006; 21 (10): 2694-2698. DOI: 10.1093/humrep/del203.

13. Goldstajn M.S., Kovacevic D. The effect of trombophilia on pregnancy outcome and IVF success. Coll Antropol. 2014, Dec; 38 (4): 1153-1161.

14. Bar-On S., Cohen A., Levin I., Avni A., Lessing J.B., Atmog B. Upper extremity deep vein thrombosis following ovarian stimulation. Harefuah. 2011, Nov; 150 (11): 849-851, 875.

15. Nelson S.M. Venous thrombosis during assisted reproduction: novel risk reduction strategies. Thromb Res. 2013 Jan; 131 Suppl 1:S1-3. DOI: 10.1016/S0049-3848(13)00023-6.

16. Wolf C.E., Haubelt H., Pauer H.U., Hinney B., Krome-Cesar C., Legler T.J. et al. Recurrent pregnancy loss and its relation to FV Leiden, FII G20210A and polymorphisms of plasminogen activator and plasminogen activator inhibitor. Pathophysiol. Haemost. Thromb. 2003, May-Jun; 33 (3): 134-137. DOI: 77821.

17. NurkE., TellG.S., Refsum H., UelandP.M., Vollset S.E. Factor V Leiden, pregnancy complications and adverse outcomes: the Hordaland Homocysteine Study. QJM. 2006, May; 99 (5): 289-298. DOI: 10.1093/qjmed/hcl040.

18. Norrie G. Farquharson R.G., Greaves M. Screening and treatment for heritable thrombophilia in pregnancy failure: inconsistencies among UK early pregnancy units. Br. J. Haematol. 2009; 144: 241-244. DOI: 10.1111/j.1365-2141.2008.07444.x.

19. Safdarian L., NajmiZ., Aleyasin A., Aghahosseini M., RashidiM., Asadollah S. Recurrent IVF failure and hereditary thrombophilia. Iran J. Reprod. Med. 2014, Jul; 12 (7): 467-470.

20. Kupferminc M.J. Thrombophilia and pregnancy. Curr. Pharm. Des. 2005; 11 (6): 735-748.

21. Dolitzky M., Inbal A., Segal Y., Weiss A., Brenner B., Carp H. A randomized study of thromboprophilaxis in women with unexplained consecutive recurrent miscarriages. Fertil. Steril. 2006; 86: 362. DOI:10.1016/j.fertnstert.2005.12.068.

22. Simur A., Ozdemir S., Acar H., Colakoglu M.C., Gorkemli H., Balci O. et al. Repeated in vitro fertilization failure and its relation with thrombophilia. Gynecol. Obstet. Invest. 2009; 67: 109-112. DOI: 10.1159/000165776.

23. Dulitzky M., Cohen S.B., Inbal A., Seidman D.S., Soriano D., Lidor A. et al. I ncreased prevalence of thrombophilia among women with severe ovarian hyperstimulation syndrome. Fertil. Steril. 2002; 77: 463-467.

24. Riyazi N., Leeda M., de Vries J.I., Huijgens PC., van Geijn H.P., Dekker G.A. Low-molecular-weight heparin combined with aspirin in pregnant women with thrombophilia and a history of preeclampsia or fetal growth restriction: a preliminary study. Eur. J. Obstet. Gynecol. Reprod. Biol. 1998; 80 (1): 49-54.

25. Gris J.C., Mercier E., Quere I., Lavigne-Lissalde G., Cochery-Nouvellon E., Hoffet M. et al. Low-molecular-weight heparin versus low-dose aspirin in women with one fetal loss and a constitutional thrombophilic disorder. Blood. 2004, May 15; 103 (10): 3695-9. DOI: 10.1182/blood-2003-12-4250.

26. Gopel W., Ludwig M., Junge A.K., Kohlmann T., Diedrich K., Moller J. Selection pressure for the factor-V-Leiden mutation and embryo implantation. Lancet. 2001, Oct 13; 358 (9289): 1238-1239. DOI: 10.1016/S0140-6736(01)06354-1.

27. Khosravi F., Zarei S., Ahmadvand N., Akbarzadeh-Pasha Z., Savadi E., Zarnani A.H. et al. Association between plasminogen activator inhibitor 1 gene mutation and different subgroups of recurrent miscarriage and implantation failure. J. Assist. Reprod. Genet. 2014, Jan; 31 (1): 121-124. DOI: 10.1007/s10815-013-0125-8.

28. Buchholz T., Lohse P., RogenhoferN., Kosian E., Pihusch R., Thaler C.J. Polymorphisms in the ACE and PAI-1 genes are associated with recurrent spontaneous miscarriages. Hum. Reprod. 2003; 18: 2473-2477.

29. Dossenbach-Glaninger A., van Trotsenburg M., Dossenbach M. et al. Plasminogen activator inhibitor 1 4G/5G polymorphism and coagulation factor XIII Val34Leu polymorphism: impaired fibrinolysis and early pregnancy loss. Clin. Chem. 2003; 49: 1081-1086.

30. Idali F., Zareii S., Mohammad-Zadeh A., Reihany-Sabet F., Akbarzadeh-Pasha Z., Khorram-Khorshid H.R. et al. Plasminogen activator inhibitor 1 and meth-ylenetetrahydrofolate reductase gene mutations in iranian women with polycystic ovary syndrome. Am. J. Reprod. Immunol. 2012; 68 (5): 400-407. DOI: 10.1111/aji.12002.

31. LiX., Liu Y., Zhang R., Tan J., Chen L., Liu Y. Meta-Analysis of the Association between Plasminogen Activator Inhibitor-1 4G/5G Polymorphism and Recurrent Pregnancy Loss. Med. Sci. Monit. 2015; 21: 1051-1056. DOI: 10.12659/MSM.892898.

32. Di Castelnuovo A., de Gaetano G., Benedetta Donati M., Iacoviello L. Platelet glycoprotein IIb/IIIa polymorphism and coronary artery disease: implications for clinical practice. Am. J. Pharmacogenomics. 2005; 5 (2): 93-99.

33. Zotova T.Iu., Frolov V.A.,ZotovA.K.,Miandina G.I., KomarovaA.G. Analysis of the state of coronary arteries in patients with acute coronary syndrome in dependence on the integrin (1-3 gene polymorphism. Kardiologiia. 2014; 54(8): 10-13. Russian.

34. Goncharova I.A., Babushkina N.P., Minakheva L.I., Markova V.V., Kulish E.V., Sal-akhov R.R. et al. Prevalence of alleles of polymorphic variants Leu33Pro and Leu66Arg gene ITGB3 among inhabitants of Siberia. Genetika. 2013, Aug; 49 (8): 1008-1012. Russian.

35. Germeyer A., Sa varis R.F., Jauckus J., Lessey B. Endometrial beta3 Integrin profile reflects endometrial receptivity defects in women with unexplained recurrent pregnancy loss. Reprod. Biol. Endocrinol. 2014; 12: 53. DOI: 10.1186/1477-7827-12-53.

36. Hooft van't F.M., von Bahr S.J., Silveira A., Iliadou A., Eriksson P., Hamsten A. Two common, functional polymorphisms in the promoter region of the beta-fibrinogen gene contribute to regulation of plasma fibrinogen concentration. Arterioscler Thromb. Vasc. Biol. 1999, Dec; 19 (12): 3063-3070.

37. Martinez C., Antyn A.I., Corral J., Quiroga T., Panes O., Lozano M.L. et al. Genotype-phenotype relationship for six common polymorphisms in genes affecting platelet function from 286 healthy subjects and 160 patients with mucocutaneous bleeding of unknown cause. Br. J. Haematol. 2009, Jun; 146 (1): 95-103.

38. Di Paola J., Jugessur A., Goldman T., Reiland J., Tallman D., Sayago C. et al. Platelet glycoprotein I(b)alpha and integrin alpha2 beta1 polymorphisms: gene frequencies and linkage disequilibrium in a population diversity panel. J. Thromb. Haemost. 2005, Jul; 3 (7): 1511-1521. DOI: 10.1111/j.1538-7836.2005.01273.x.

39. Moshfegh K., Wuillemin W.A., Redondo M., Lammle B., Beer J.H., Liechti-Gallati S. et al. Association of two silent polymorphisms of platelet glycoprotein Ia/ IIa receptor with risk of myocardial infarction: a case-control study. Lancet. 1999, Jan 30; 353 (9150): 351-354.

40. Angiolillo D.J., Fernandez-Ortiz A., Bernardo E., Ramirez C., Escaned J., Moreno R.et al. 807 C^ Polymorphism of the glycoprotein Ia gene and pharmacoge-netic modulation of platelet response to dual antiplatelet treatment. Blood Coagul. Fibrinolysis. 2004, Jul; 15 (5): 427-433.

41. Kunicki T.J., Williams S.A., Salomon D.R., Harrison P., Crisler P., Nakagawa P. et al. Genetics of platelet reactivity in normal, healthy individuals. J. Thromb. Hae-most. 2009, Dec; 7 (12): 2116-2122. DOI: 10.1111/j.1538-7836.2009.03610.x.

42. JiH.L., Long V., Briody V., Chien E.K. Progesterone modulates integrin {alpha}2 (ITGA2) and {alpha}11 (ITGA11) in the pregnant cervix. Reprod. Sci. 2011, Feb; 18 (2): 156-163. DOI: 10.1177/1933719110382305.

43. Li W.X., DaiS.X.,Zheng J.J., Liu J.Q., Huang J.F. Homocysteine Metabolism Gene Polymorphisms (MTHFR C677T, MTHFR A1298C, MTR A2756G and MTRR A66G) Jointly Elevate the Risk of Folate Deficiency. Nutrients. 2015; 7 (8): 6670-6687. DOI: 10.3390/nu7085303.

44. Seremak-Mrozikiewicz A., Bogacz A., Bartkowiak-Wieczorek J., Wolski H., Czerny B., Gorska-Paukszta M. et al. The importance of MTHFR, MTR, MTRR and CSE expression levels in Caucasian women with preeclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol. 2015; 188: 113-7. DOI: 10.1016/j.ejogrb.2015.03.009.

45. Marttnez-Frtas M.L., Perez B., Desviat L.R., Castro M., Leal F., Rodriguez L. et al. Maternal polymorphisms 677C-T and 1298A-C of MTHFR, and 66A-G MTRR genes: is there any relationship between polymorphisms of the folate pathway, maternal homocysteine levels, and the risk for having a child with Down syndrome? Am. J. Med. Genet. A. 2006; 140 (9): 987-997. DOI:10.1002/ajmg.a.31203.

46. Holmes M.V., Newcombe P., Hubacek J.A., Sofat R., Ricketts S.L., Cooper J. et al. Effect modification by population dietary folate on the association between MTHFR genotype, homocysteine, and stroke risk: a meta-analysis of genetic studies and randomised trials. The Lancet. 2011; 378: 584-594. DOI: 10.1016/S0140-6736(11)60872-6.

47. Miller A.L. The methionine-homocysteine cycle and its effects on cognitive diseases. Altern. Med. Rev. 2003; 8 (1): 7-19.

48. Chango A., Emery-Fillon N., de Courcy G.P., Lambert D., Pfister M., Rosenblatt D.S. et al. A polymorphism (80G- > A) in the reduced folate carrier gene and its associations with folate status and homocysteinemia. Mol. Genet. Metab. 2000; 70 (4): 310-315. DOI: 10.1006/mgme.2000.3034.

49. Varela-MoreirasG. Nutritional regulation of homocysteine: effects of drugs. Biomed. Pharmacother. 2001, Oct; 55 (8): 448-453.

50. Chitayat D., Matsui D., Amitai Y., Kennedy D., Vohra S., Rieder M. et al. Folic acid supplementation for pregnant women and those planning pregnancy - 2015 update. J. Clin. Pharmacol. 2016, Feb; 56 (2): 170-5. DOI: 10.1002/jcph.616.

51. Khaire A.A., Kale A.A., JoshiS.R. Maternal omega-3 fatty acids and micronutrients modulate fetal lipid metabolism: A review. Prostaglandins Leukot Essent Fatty Acids. 2015, Jul; 98: 49-55. DOI: 10.1016/j.plefa.2015.04.007.

52. Charita B., Padma G., Sushma P., Deepak P., Padma T. Estimation of risk and interaction of single nucleotide polymorphisms at angiotensinogen locus causing susceptibility to essential hypertension: a case control study. J. Renin Angiotensin Aldosterone Syst. 2012, Dec; 13 (4): 461-471. DOI: 10.1177/1470320312444650.

53. Lin R1, Lei Y, YuanZ, Ju H, LiD. Angiotensinogen gene M235T and T174M polymorphisms and susceptibility of pre-eclampsia: a meta-analysis. Ann. Hum. Genet. 2012, Sep; 76 (5): 377-86. DOI: 10.1111/j.1469-1809.2012.00722.x.

54. Mohana V.U., Swapna N., Surender R.S., Vishnupriya S., Padma T. Gender-related association of AGT gene variants (M235T and T174M) with essential hypertension - a case-control study. Clin. Exp. Hypertens. 2012; 34 (1): 38-44. DOI: 10.3109/10641963.2011.618207.

55. RahimiZ., RahimiZ., MozafariH., ParsianA. Preeclampsia and angiotensin converting enzyme (ACE) I/D and angiotensin II type-1 receptor (AT1R) A1166C polymorphisms: association with ACE I/D polymorphism. J. Renin Angiotensin Aldosterone Syst. 2013, Jun; 14 (2): 174-180. DOI: 10.1177/1470320312448950.

56. Gong F.F., Hu C.Y., Lu S.S., Qian Z.Z., Feng F., Wu Y.L. et al. Associations of Angiotensin-Converting Enzyme Insertion/Deletion, Angiotensin II Receptor A1166C, and Endothelial Nitric Oxide Synthase 4b/a Gene Polymorphisms With Pregnancy Hypertensive Disorders: A Meta-Analysis. J. Clin. Hypertens (Greenwich). 2015, Dec; 17 (12): 954-962. DOI: 10.1111/jch.12606.

57. Zhao L., Dewan A.T., Bracken M.B. Association of maternal AGTR1 polymorphisms and preeclampsia: a systematic review and meta-analysis. J. Matern. Fetal. Neonatal. Med. 2012, Dec; 25 (12): 2676-2680. DOI: 10.3109/14767058.2012.708370.

58. Pringle K.G., Tadros M.A., Callister R.J., Lumbers E.R. The expression and localization of the human placental prorenin/renin-angiotensin system throughout pregnancy: roles in trophoblast invasion and angiogenesis? Placenta. 2011, Dec; 32 (12): 956-962. DOI: 10.1016/j.placenta.2011.09.020.

59. Tower C.L., Lui S., Charlesworth N.R., Smith S.D., Aplin J.D., Jones R.L. Differential expression of angiotensin II type 1 and type 2 receptors at the maternal-fetal interface: potential roles in early placental development. Reproduction. 2010, Dec; 140 (6): 931-942. DOI: 10.1530/REP-10-0307.

60. Ezra Y., Simon A, Yaron A., Laufer N., Navot D. Angiotensin-I-converting enzyme and its correlation with human follicular fluid steroids. Eur. J. Obstet. Gynecol. Reprod. Biol. 1992; 44 (1): 71-75.

61. Su M.T., Lin S.H., Chen Y.C., Kuo P.L. Genetic association studies of ACE and PAI-1 genes in women with recurrent pregnancy loss: a systematic review and meta-analysis. Thrombю Haemost. 2013; 109 (1): 8-15. DOI: 10.1160/TH12-08-0584.

62. Yang C., Fangfang W., Jie L., Yanlong Y., Jie W., Xuefei L. et al. Angiotensin-converting enzyme insertion/deletion (I/D) polymorphisms and recurrent pregnancy loss: a meta-analysis. J. Assist. Reprod. Genet. 2012; 29 (11): 11671173. DOI: 10.1007/s10815-012-9870-3.

63. Martinez-Calatrava M.-J., Gonzalez-Sanchez J.-L., Martinez-Larrad M.-T., Per-ez-BarbaM.,Serrano-Rios M. Common haplotypes of the C-reactive protein gene and circulating leptin levels influence the interindividual variability in serum C-reactive protein levels. Thrombosis and Haemostasis. 2007; 98 (5): 1088-1095.

64. Shen J., Arnett D.K., Parnell L.D., Peacock J.M., Lai C.Q., Hixson J. E. et al. Association of common C-reactive protein (CRP) gene polymorphisms with baseline plasma CRP levels and fenofibrate response: the GOLDN study. Diabetes Care. 2008? May; 31 (5): 910-915. DOI: 10.2337/dc07-1687.

65. PaiJ.K., MukamalKJ., RexrodeK.M., Rimm E.B. C-Reactive Protein (CRP) Gene Polymorphisms, CRP Levels, and Risk of Incident Coronary Heart Disease in Two Nested Case-Control Studies PLoS ONE. 2008; 3 (1): e1395. DOI: 10.1371/journal.pone.0001395.

66. Kolz M., Koenig W., Muller M., Andreani M., Greven S., Illig T. et al. DNA variants, plasma levels and variability of C-reactive protein in myocardial infarction survivors: results from the AIRGENE study. Eur. Heart. J. 2008, May; 29 (10): 1250-1258. DOI:10.1093/eurheartj/ehm442.

67. Teran E., Escudero C., Calle A. C-Reactive Protein during Normal Pregnancy and Preeclampsia. Int. J. of Gynecol. and Obstetrics. 2005; 89:299-300. DOI:10.1016/j.ijgo.2005.02.002.

68. Girelli D., Russo C., Ferraresi P, Olivieri O., PinottiM., Friso S. et al. Polymorphisms in the factor VII gene and the risk of myocardial infarction in patients with coronary artery disease. N. Engl. J. Med. 2000, 14; 343 (11): 774-780. DOI:10.1056/NEJM200009143431104.

69. Di Castelnuovo A., D'Orazio A., Amore C., Falanga A., Kluft C., Donati M.B. et al. Genetic modulation of coagulation factor VII plasma levels: contribution of different polymorphisms and gender-related effects. Thromb. Haemost. 1998; 80 (4): 592-597.

70. Wells P.S., Anderson J.L., Rodger M.A., Carson N., Grimwood R.L., Doucette S.P. The factor XIII Val34Leu polymorphism: is it protective against idiopathic venous thromboembolism? Blood Coagul. Fibrinolysis. 2006, Oct; 17 (7): 533538. DOI:10.1097/01.mbc.0000245295.79891.86.

71. Wells P.S., Anderson J.L., Scarvelis D.K., Doucette S.P., Gagnon F. Factor XIII Val-34Leu variant is protective against venous thromboembolism: a HuGE review and meta-analysis. Am. J. Epidemiol. 2006, Jul 15; 164 (2): 101-109. DOI:10.1093/aje/kwj179.

72. Fontana P., Dupont A., Gandrille S., Bachelot-Loza C., Reny J.L., Aiach M. et al. Adenosine diphosphate-induced platelet aggregation is associated with P2Y12 gene sequence variations in healthy subjects. Circulation. 2003; 108 (8): 989995. DOI:10.1161/01.CIR.0000085073.69189.88.

73. Muslimova E.F., Rebrova T.Yu., Serebryakova V.N., AfanasievS.A., Trubacheva I.A. Association of polymorphism of genes ACE, NOS3, ITGB3 and P2RY12 with total cholesterol and glucose in working-age women of West Siberian region. Far Eastern Medical Journal. 2015; 2: 78-84. Russian.

74. Vassilatis D.K., Hohmann J.G., Zeng H., Li F., Ranchalis J.E., Mortrud M.T. et al. The G protein-coupled receptor repertoires of human and mouse. Proc. Natl. Acad. Sci. USA. 2003; 100 (8): 4903-4908. DOI:10.1073/pnas.0230374100.

75. Lanza F. Bernard-Soulier syndrome (Hemorrhagiparous thrombocytic dystrophy). Orphanet. J. Rare Dis. 2006; 1: 46. DOI: 10.1186/1750-1172-1-46.

76. Simsek S., Bleeker P.M., van der Schoot C.E., von dem Borne A.E. Association of a variable number of tandem repeats (VNTR) in glycoprotein Ib alpha and HPA-2 alloantigens. Thromb. Haemost. 1994; 72 (5): 757-761.

77. Kobashi G., Yamada H., Ohta K., Kato E.-H., Ebina Y., Fujimoto S. Endothelial nitric oxide synthase gene (NOS3) variant and hypertension in pregnancy. Am. J. Med. Genet. 2001, 103 (3): 241-244.

78. Hillermann, R., Carelse, K., Gebhardt, G.S. The Glu298asp variant of the endothelial nitric oxide synthase gene is associated with an increased risk for ab-ruptio placentae in pre-eclampsia. J. Hum. Genet. 2005; 50 (8): 415-419. DOI: 10.1007/s10038-005-0270-8.

79. Thomas D.D., Heinecke J.L., Ridnour L.A., Cheng R.Y., Kesarwala A.H., Switzer C.H. et al. Signaling and stress: The redox landscape in NOS2 biology. Free Radic. Biol. Med. 2015; 87: 204-225. DOI: 10.1016/j.freeradbiomed.2015.06.002.

80. del Carmen Terrones SaldivarM., Juarez F.J., Viramontes J.L., Rodriguez Vazquez M.L., Posadas del Rio F.A. Glutathione S-transferases and esterases in placenta after normal and pre-eclamptic pregnancies. Placenta. 2004, Apr; 25 (4): 331-336. DOI:10.1016/j.placenta.2002.12.001.

81. Tatarskyy P. F., Kucherenko A.M., Khazhilenko K.G., Zinchenko V.M., Ilyin I.E., Livshits L.A. Study of the possible role of the polymorphism of the detoxication and coagulation system genes of pathogenesis of pregnancy loss. Biopolymers and Cell. 2011; 27: 214-220. DOI: 10.7124/bc.0000BC. Ukrainian.

82. RoesE.M., RaijmakersM.T., RoelofsH.M., Peters W.H., SteegersE.A. Urinary GSTP1-1 excretion is markedly increased in normotensive pregnancy as well as in preeclampsia. J. Nephrol. 2005, Jul-Aug; 18 (4): 405-408.

83. Liu X., An B.H., Kim M.J., Park J.H., Kang Y.S., Chang M. Human glutathione S-transferase P1-1 functions as an estrogen receptor a signaling modulator. Bio-chem. Biophys. Res. Commun. 2014, Sep 26; 452 (3): 840-844. DOI: 10.1016/j.bbrc.2014.09.017.

84. Costa L.G., Li W. F., Richter R.J., Shih D.M., L usis A., Furlong C.E. The role of paraox-onase (PON1) in the detoxication of organophosphates and its human polymorphism. Chem. Biol. Interact. 1999, May 14; 119-120: 429-438.

85. Mashayekhi F., Behrouzi S., Yousefi M., Salehi Z. The association of PON1 192 Q/R polymorphism and the risk of female infertility. Cell. Mol. Biol. (Noisy-le-grand). 2015, May 28; 61 (2): 74-77.

86. Younis A., Clower C., Nelsen D., Butler W., Carvalho A., Hok E. et al. The relationship between pregnancy and oxidative stress markers on patients undergoing ovarian stimulations. J. Assist. Reprod. Genet. 2012, Oct; 29 (10): 10831089. DOI: 10.1007/s10815-012-9831-x.

87. Bangerter M., Guthner C., Beneke H., Hildebrand A., Grunewald M., Griessham-mer M. Pregnancy in essential thrombocythaemia: treatment and outcome of 17 pregnancies. Eur. J. Haematol. 2000, Sep; 65 (3): 165-169.

88. Mercier E., Lissalde-Lavigne G., Gris J.C. JAK2 V617F mutation in unexplained loss of first pregnancy. N. Engl. J. Med. 2007, Nov 8; 357 (19): 1984-1985. DOI: 10.1056/NEJMc071528.

89. Yoo J.H., ParkT.S., Maeng H.Y., Sun Y.K., Kim Y.A., KieJ.H. etal. JAK2 V617F/C618R mutation in a patient with polycythemia vera: a case study and review of the literature. Cancer Genet. Cytogenet. 2009, Feb; 189 (1): 43-47. DOI: 10.1016/j.cancergencyto.2008.09.010.

90. Grandone E., Colaizzo D., Tiscia G., Vergura P., Cappucci F., Greco L. et al. Impact of common thrombophilias and JAK2 V617F on pregnancy outcomes in unselected Italian women. J. Thromb. Haemost. 2011, Mar; 9 (3): 496-501. DOI:10.1111/j.1538-7836.2011.04183.x.


Для цитирования:


Иванов А.В., Ткачук А.Г., Комличенко Э.В., Федотов Ю.Н. Выбор оптимальной панели исследования одиночных нуклеотидных полиморфизмов перед ЭКО. Акушерство и Гинекология Санкт-Петербурга. 2017;(1):58-69.

For citation:


Ivanov A.V., Tkachuk A.G., Komlichenko E.V., Fedotov Y.N. Toward optimal set of single nucleotide polymorphism testing before IVF. Obstetrics and Gynaecology of Saint-Petersburg. 2017;(1):58-69. (In Russ.)

Просмотров: 65


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2541-8491 (Print)